
Introduction to YaaS Services

Sam Schneider
Sr. Director, YaaS GTM

“In short, the microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own
process and communicating with lightweight
mechanisms, often an HTTP resource API”

http://martinfowler.com/articles/microservices.html

Monolithic Architecture vs. Microservices

Application Server

Process

Process

Process

Process

Process
Process

Process

One size fits all optimization (CPU, Memory, IO)

at App Server / Process level

Resource optimization per service / process

Innovate or Die?

http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/

Four principle benefits

•  Agility – partial updates and deployments of a system

•  Efficiency – efficient use of code and infrastructure

•  Resiliency – no single point of failure

•  Revenue – faster iteration and less downtime can translate to higher
revenue

Can we Stand on the Shoulders of Giants?

Many companies have made the transition to microservices from monolithic
architectures

Most have done so for greater agility, resiliency and scaling potential

Werner Vogels (Amazon CTO) on “Microservices”…
 before they were cool (2006)

“We went through a period of serious introspection and concluded that a
service-oriented architecture would give us the level of isolation that would
allow us to build many software components rapidly and independently. By
the way, this was way before service-oriented was a buzzword. For us service
orientation means encapsulating the data with the business logic that
operates on the data, with the only access through a published service
interface. No direct database access is allowed from outside the service, and
there’s no data sharing among the services.”

“If you hit the Amazon.com gateway page, the application calls more than 100
services to collect data and construct the page for you.”

http://queue.acm.org/detail.cfm?id=1142065

Microservices: A New Idea?

•  Microservices can be thought of as a well-defined
subset of SOA, ergo not new

Microservices SOA

What Key Parts of SOA Does Microservices Remove?

•  One key interpretation of SOA involves an ESB (Enterprise Service Bus)
mediating communication

S1 S3 S2

S5 S4

•  Magic happens here (transform, route, enrich)

•  Potential coupling to a global enterprise data model

•  Communications in microservices are a mix of point-to-point and
asynchronous messaging – typically via simple queues

ESB

Factors – Principles for the Cloud
OPEN TECHNOLOGY LANDSCAPE

Freedom to pick the right tool for
the job

SCALABILITY OF TECHNOLOGY

Linear horizontal scalability:
lower costs, less limits on
maximal scalability

MONITOR EVERYTHING

Specify everything, monitor and
alert

SMALL, INDEPENDENT SERVICES

The perfect service has zero
dependencies, functionality
limited to one domain. Keep the
design simple.

DESIGN FOR FAILURE

If it can be down, it will be down.
Design for failure and recovery.

API FIRST

Focus on developing rich APIs and
develop the functionality later.

Design the API for your customers

SELF SUFFICIENT TEAMS

Teams can take a product from
the concept to production with
limited dependencies outside of
the team

RELEASE EARLY, RELEASE OFTEN

Establish a deployment pipeline
that allows to deliver without fear
of breaking things

RESPONSIBILITY

You build it, you run it. And release
it, scale it, maintain it, support it,
improve it, …

Codebase

Dependencies

Config

Backing Services Port Binding Dev/Prod Parity

Build, Release,
Run Concurrency Logs

Processes Disposability Admin Processes

12 Factors

The methodology outlined by the 12 Factor App outlines the experiences with development, operating, and
scaling services in the cloud https://12factor.net

Unabashedly Borrowed from The 12 Factor App

YaaS High-Level

PAAS LAYER
(CLOUDFOUNDRY)

IAAS LAYER
(AWS / HCP)

YAAS.IO API PROXY

KAFKA MONGO CASSANDRA REDIS

DEVPORTAL MARKET COMMUNITY BUILDER CORE
PACKAGES

COMMERCE
PACKAGES

CECENTER /
LOYALTY

PACKAGES

PROFILE
PACKAGES

Types of YaaS Microservices

MASHUP SERVICE

SERVICE SERVICE SERVICE

SIMPLE SERVICE

BACKING
SERVICE

YaaS Product Service

Master-of-record repository
for structured product content

Provides scalable, fast, and
easy-to-use back-end for
§  Storefronts (web and native apps)

serving product content
§  Back-office PCM and data editing

tools for products
§  Systems integration scenarios

Internals of the YaaS Product Service

PRODUCT
SERVICE

§  JAVA

DOCUMENT
SERVICE

§  SCALA

PUBSUB
SERVICE

§  SCALA

MEDIA
SERVICE

§  JAVA

MONGO DB AMAZON S3
STORAGE

APACHE
KAFKA

How is the YaaS architecture layered

BACKING SERVICES – MONGO, CASSANDRA, ETC.

DOCUMENT
SERVICE

PRODUCT
SERVICE

EMAIL
SERVICE

SEARCH
SERVICE

OAUTH2
SERVICE

PUBSUB
SERVICE

OTHER CORE
SERVICES

INVENTORY
SERVICE

PRICE
SERVICE

CATEGORY
SERVICE

OTHER
BUSINESS
SERVICES

ORDER
SERVICE

PRODUCT DETAILS PAGE
MASHUP SEARCH PAGE MASHUP CHECKOUT

MASHUP

OTHER
BUSINESS
MASHUPS

Native applications
accessible only by
owning teams

How is the YaaS architecture layered

BACKING SERVICES – MONGO, CASSANDRA, ETC.

DOCUMENT
SERVICE

PRODUCT
SERVICE

EMAIL
SERVICE

SEARCH
SERVICE

OAUTH2
SERVICE

PUBSUB
SERVICE

OTHER CORE
SERVICES

INVENTORY
SERVICE

PRICE
SERVICE

CATEGORY
SERVICE

OTHER
BUSINESS
SERVICES

ORDER
SERVICE

PRODUCT DETAILS PAGE
MASHUP SEARCH PAGE MASHUP CHECKOUT

MASHUP

OTHER
BUSINESS
MASHUPS

Focus on core
functionality. Re-use
enables teams to deliver
business value rapidly

How is the YaaS architecture layered

BACKING SERVICES – MONGO, CASSANDRA, ETC.

DOCUMENT
SERVICE

PRODUCT
SERVICE

EMAIL
SERVICE

SEARCH
SERVICE

OAUTH2
SERVICE

PUBSUB
SERVICE

OTHER CORE
SERVICES

INVENTORY
SERVICE

PRICE
SERVICE

CATEGORY
SERVICE

OTHER
BUSINESS
SERVICES

ORDER
SERVICE

PRODUCT DETAILS PAGE
MASHUP SEARCH PAGE MASHUP CHECKOUT

MASHUP

OTHER
BUSINESS
MASHUPS

Focus on specific
business resources
and functionality only

How is the YaaS architecture layered

BACKING SERVICES – MONGO, CASSANDRA, ETC.

DOCUMENT
SERVICE

PRODUCT
SERVICE

EMAIL
SERVICE

SEARCH
SERVICE

OAUTH2
SERVICE

PUBSUB
SERVICE

OTHER CORE
SERVICES

INVENTORY
SERVICE

PRICE
SERVICE

CATEGORY
SERVICE

OTHER
BUSINESS
SERVICES

ORDER
SERVICE

PRODUCT DETAILS PAGE
MASHUP SEARCH PAGE MASHUP CHECKOUT

MASHUP

OTHER
BUSINESS
MASHUPS

Orchestrate business
services or aggregate
data from those

Constructing with Microservices

•  Extending a monolithic application with cloud-based services is nothing
new

•  Many application functions do not belong in the monolith and it is only
force of habit vs. good design which drives a function/feature to be
implemented in the monolith

•  With the YaaS Market, many services are currently available and the
number will continue to grow

Decomposition of monolithic applications

Connected, monolithic,
hosted in 1 DC, application

Smaller, distributed into the cloud
self-contained digital services

Cloud

Getting from the Monolith the the Hybrid Model

•  There are many features that are orthogonal to the core domain that
can be factored out (…and executed / deployed elsewhere)

•  We can turn to Domain Driven Design, which advocates creating
Bounded Contexts around business concepts
•  Develop a simple shared model (think: API) that communicates the intent and

interface of these contexts
•  Internal details can differ from the core platform (models, data store,

programming language)

•  Refactor functionality into a package and separate that package into
a service

•  Alternatively, the package can simply by the glue between disparate
domains (think: YaaS Services)

No Free Lunch

Microservices provide benefits…

Strong Module Boundaries: Microservices
reinforce modular structure, which is particularly
important for larger teams.

Independent Deployment: Simple services are
easier to deploy, and since they are
autonomous, are less likely to cause system
failures when they go wrong.

Technology Diversity: With microservices you
can mix multiple languages, development
frameworks and data-storage technologies.

…but come with costs

Distribution: Distributed systems are harder to
program, since remote calls are slow and are
always at risk of failure.

Eventual Consistency: Maintaining strong
consistency is extremely difficult for a distributed
system, which means everyone has to manage
eventual consistency.

Operational Complexity: You need a mature
operations team to manage lots of services,
which are being redeployed regularly.

http://martinfowler.com/articles/microservice-trade-offs.html July, 2015

Get Started With YaaS
Register

Create Project

Create Organization

Subscribe to Packages

Build Something Amazing

Customer

Consumption Scenarios (available in US)
Partner Business Opportunities

Y
aa

S
.IO

SAP
micro-
service

Customer

Y
aa

S
.IO

SAP
micro-
service

Partner A

SAP
MS

Customer

•  Customer subscribes

•  Partner can work on Customer subscription once
Customer creates Authorized User for Partner

•  Implementation, Integration & Migration Services

•  Partner builds own Cloud offering including SAP
packaged services and microservices subscriptions

•  Partner contracts with Customer for their Cloud offering

•  Customer can work on Partner subscription (no
contractual relationship with SAP)

•  IP monetization through Cloud offering

•  Reselling

Partner SAP
MS

*

*

* Ideal Cloud PaaS & development environment:
 Hana Cloud Platform, separate contract

•  Transformation & Advisory Services

Customer

YaaS Resources

•  https://www.yaas.io/

•  https://knowledge.yaas.io/

•  https://devportal.yaas.io/gettingstarted/

•  (Clojurescript sample client)
https://github.com/samcschneider/yaas-essentials

Example Business Case

•  The customer has some static product information, but no ability to
manage it except through a CMS as content

•  The customer wishes to have maintainable product content management

•  Phase two involves commerce and the solution implemented should allow
for a purchase process

•  The rollout should be phased and evolve their existing web property vs. a
big bang replacement

START INNOVATING
TODAY!

Sign up at:
www.yaas.io

